In vitro Functional screening as a means to identify new plasticizers devoid of reproductive toxicity
Environmental Research
Boisvert A, Jones S, Issop L, Erythropel HC, Papadopoulos V, Culty M
2016
Plasticizers are indispensable additives providing flexibility and malleability to plastics. Among them, several phthalates, including di (2-ethylhexyl) phthalate (DEHP), have emerged as endocrine disruptors, leading to their restriction in consumer products and creating a need for new, safer plasticizers. The goal of this project was to use in vitro functional screening tools to select novel non-toxic plasticizers suitable for further in vivo evaluation. A panel of novel compounds with satisfactory plasticizer properties and biodegradability were tested, along with several commercial plasticizers, such as diisononyl-cyclohexane-1,2-dicarboxylate (DINCH®). MEHP, the monoester metabolite of DEHP was also included as reference compound. Because phthalates target mainly testicular function, including androgen production and spermatogenesis, we used the mouse MA-10 Leydig and C18-4 spermatogonial cell lines as surrogates to examine cell survival, proliferation, steroidogenesis and mitochondrial integrity. The most promising compounds were further assessed on organ cultures of rat fetal and neonatal testes, corresponding to sensitive developmental windows. Dose-response studies revealed the toxicity of most maleates and fumarates, while identifying several dibenzoate and succinate plasticizers as innocuous on Leydig and germ cells. Interestingly, DINCH®, a plasticizer marketed as a safe alternative to phthalates, exerted a biphasic effect on steroid production in MA-10 and fetal Leydig cells. MEHP was the only plasticizer inducing the formation of multinucleated germ cells (MNG) in organ culture. Overall, organ cultures corroborated the cell line data, identifying one dibenzoate and one succinate as the most promising candidates. The adoption of such collaborative approaches for developing new chemicals should help prevent the development of compounds potentially harmful to human health.
Read More
In-utero Exposure to Low Doses of Genistein and Di-(2-ethylhexyl) Phthalate (DEHP) Alters Innate Immune Cells in Neonatal and Adult Rat Testis.
Andrology
Walker C, Ghazisaeidi S, Collet B, Boisvert A, Culty M
Although humans are exposed to mixtures of endocrine disruptor chemicals, few studies have examined their toxicity on male reproduction. We previously found that fetal exposure to a mixture of the phytoestrogen genistein (GEN) and the plasticizer di(2-ethylhexyl) phthalate (DEHP) altered gene expression in adult rat testes. Our goal was to investigate the effects of fetal exposure to GEN-DEHP mixtures at two doses relevant to humans on testicular function and transcriptome in neonatal and adult rats.
Pregnant SD rats were gavaged with vehicle, GEN or DEHP, alone or mixed at 0.1 and 10 mg/kg/day, from gestation day 14 to birth. Fertility, steroid levels, and testis morphology were examined in neonatal and adult rats. Testicular transcriptomes were examined by gene array and functional pathway analyses. Cell-specific genes/proteins were determined by quantitative real-time PCR and immunohistochemistry. GEN-DEHP mixtures increased the rates of infertility and abnormal testes in adult rats. Gene array analysis identified more genes exclusively altered by the mixtures than individual compounds. Altered top canonical pathways included urogenital/reproductive developmental and inflammatory processes. GEN-DEHP mixtures increased innate immune cells and macrophages markers at both doses and ages, more strongly and consistently than DEHP or GEN alone. Genes exclusively increased by the mixture in adult testis related to innate immune cells and macrophages included Kitlg, Rps6ka3 (Rsk2), Nr3c1, Nqo1, Lif, Fyn, Ptprj (Dep-1), Gpr116, Pfn2, and Ptgr1.
These findings demonstrate that GEN-DEHP mixtures at doses relevant to human induce adverse testicular phenotypes, concurrent with age-dependent and non-monotonic changes in testicular transcriptomes. The involvement of innate immune cells such as macrophages suggests immediate and delayed inflammatory responses which may contribute to testicular dysfunction. Moreover, these effects are complex and likely involve multiple interactions between immune and non-immune testicular cell types that will entail further studies.
Read More
Impact of Endocrine-Disrupting Chemicals on steroidogenesis and consequences on testicular function
Molecular and Cellular Endocrinology.
Walkers C, Garza S, Papadopoulos V, Culty M
Testicular steroidogenesis is a tightly regulated process that produces the androgens important for the development, maintenance and function of the male reproductive system. These androgens are also essential for overall health, and well-being. Disruptions in the ability of the testis to form steroids can result in developmental abnormalities, dysfunction, and infertility. Endocrine-disrupting chemicals (EDCs) can interfere with the intricate signaling and metabolizing networks that produce androgens and promote their dysfunction. These chemicals are found ubiquitously in our environment, as they are integral components of products that are used every day. The effects of EDCs, such as bisphenols, phthalates, and alkyl chemicals, have been studied independently, revealing deleterious effects; but the combined influence of these structures on steroidogenesis has yet to be completely elucidated. This manuscript presents an updated review on EDC mixtures and their impact on testicular function and fertility, highlighting new findings that illustrate the anti-androgenic capabilities of EDC mixtures.
Read More
Impact of Fetal Exposure to Endocrine Disrupting Chemical Mixtures on FOXA3 Gene and Protein Expression in Adult Rat Testes.
International Journal of Molecular Sciences
Walker C, Boisvert A, Malusare P, Culty
Perinatal exposure to endocrine disrupting chemicals (EDCs) has been shown to affect male reproductive functions. However, the effects on male reproduction of exposure to EDC mixtures at doses relevant to humans have not been fully characterized. In previous studies, we found that in utero exposure to mixtures of the plasticizer di(2-ethylhexyl) phthalate (DEHP) and the soy-based phytoestrogen genistein (Gen) induced abnormal testis development in rats. In the present study, we investigated the molecular basis of these effects in adult testes from the offspring of pregnant SD rats gavaged with corn oil or Gen + DEHP mixtures at 0.1 or 10 mg/kg/day. Testicular transcriptomes were determined by microarray and RNA-seq analyses. A protein analysis was performed on paraffin and frozen testis sections, mainly by immunofluorescence. The transcription factor forkhead box protein 3 (FOXA3), a key regulator of Leydig cell function, was identified as the most significantly downregulated gene in testes from rats exposed in utero to Gen + DEHP mixtures. FOXA3 protein levels were decreased in testicular interstitium at a dose previously found to reduce testosterone levels, suggesting a primary effect of fetal exposure to Gen + DEHP on adult Leydig cells, rather than on spermatids and Sertoli cells, also expressing FOXA3. Thus, FOXA3 downregulation in adult testes following fetal exposure to Gen + DEHP may contribute to adverse male reproductive outcomes.
Read More
IImpact of human-relevant doses of endocrine-disrupting chemical and drug mixtures on testis development and function.
Reproduction
Mohajer N and Culty M
Exposure to EDCs and pharmaceuticals during development has been linked to reproductive dysfunction, reduced semen quality, and infertility. Research indicates that EDC mixtures, which are common in the modern environment, can pose significant risks that may not be fully assessed by studying individual compound toxicity, especially at environmentally relevant doses or concentrations. Understanding the contribution of chemical mixtures to male reproductive toxicity is crucial, given the increasing reliance on pharmaceuticals and pervasiveness of anthropogenic pollution. Recent studies on EDC effects have expanded to a more diverse range of microplastics, pesticides, antimicrobials, phytoestrogens, and pharmaceuticals, such as analgesics, which can collectively impact testicular function and fertility. Adverse outcomes observed across studies include reproductive tract malformations, decreased sperm count and motility, lowered testosterone, delayed-onset puberty, and possible causal effects, such as oxidative stress and altered gene expression. Still, limited data exist on combinations of environmental pollutants and pharmaceuticals with ED potential at human-relevant doses. This review of the recent literature aims to synthesize the toxicological impact of low-dose chemical mixtures on male reproductive health. Overall, humans are exposed to EDCs and drugs through various ways, necessitating an understanding of their concomitant effects on male reproductive health.
Read More